Efficient method for predicting crystal structures at finite temperature: variable box shape simulations.

نویسندگان

  • Laura Filion
  • Matthieu Marechal
  • Bas van Oorschot
  • Daniël Pelt
  • Frank Smallenburg
  • Marjolein Dijkstra
چکیده

We present an efficient and robust method based on Monte Carlo simulations for predicting crystal structures at finite temperature. We apply this method, which is surprisingly easy to implement, to a variety of systems, demonstrating its effectiveness for hard, attractive, and anisotropic interactions, binary mixtures, semi-long-range soft interactions, and truly long-range interactions where the truly long-range interactions are treated using Ewald sums. In the case of binary hard-sphere mixtures, star polymers, and binary Lennard-Jones mixtures, the crystal structures predicted by this algorithm are consistent with literature, providing confidence in the method. Finally, we predict new crystal structures for hard asymmetric dumbbell particles, bowl-like particles and hard oblate cylinders and present the phase diagram for the oblate cylinders based on full free energy calculations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.

We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show...

متن کامل

Crashworthiness design of multi-cell tapered tubes using response surface methodology

In this article, crashworthiness performance and crushing behavior of tapered structures with four internal reinforcing plates under axial and oblique dynamic loadings have been investigated. These structures have a tapered form with five cross sections of square, hexagonal, octagonal, decagon and circular shape. In the first step, finite element simulations performed in LS-DYNA were validated ...

متن کامل

Simple and Economical Method for the Preparation of MgO Nanostructures with Suitable Surface Area

A facile and simple method was proposed to control the size and shape of the MgO nano structures with high surface area in the presence of efficient and cheap templates like PEG 200, PEG 600, PEG 4000 and sorbitol at low temperature within a little time. Nano rods and Nanoparticles have been achieved by applying these templates and altering other growth parameters. The products were charact...

متن کامل

An efficient finite difference time domain algorithm for band structure calculations of Phononic crystal

In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...

متن کامل

Second order sensitivity analysis for shape optimization of continuum structures

This study focuses on the optimization of the plane structure. Sequential quadratic programming (SQP) will be utilized, which is one of the most efficient methods for solving nonlinearly constrained optimization problems. A new formulation for the second order sensitivity analysis of the two-dimensional finite element will be developed. All the second order required derivatives will be calculat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 103 18  شماره 

صفحات  -

تاریخ انتشار 2009